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J. Phys. A: Math. Gen., Vol. 12, No. 3, 1979. Printed in Great Britain 

Prolongation structures and nonlinear evolution 
equations in two spatial dimensions: 
A general class of equations 

H C Morris 
School of Mathematics, Trinity College, Dublin 2, Ireland 
and 
Department of Mathematics", Oregon State University, Corvallis, Oregon 97331, USA 

Received 1 November 1977, in final form 11 September 1978 

Abstract. A new method of generating classes of equations which possess an inverse 
scattering formulation in two spatial dimensions is proposed and developed in detail. 

1. Introduction 

The success of the inverse scattering method (Gardener et a1 1967) for finding exact 
solutions to specific equations in one time and one spatial dimension has led to a search 
for similar equations in two spatial dimensions which have such an inverse scattering 
formulation (Ablowitz and Haberman 1975a, b, Morris 1976, 1977, 1978). For the 
two-dimensional case it is well known that most of the equations soluble by the inverse 
scattering method can be derived from the equations (Ablowitz et a1 1974; AKNS) 

A, = q C - r B  (1.1) 
q1 = B, + 2(Aq + A  iB) (1.2) 

r ,=CX+2(Ar+AiC)  (1.3) 
where A is a constant. We will refer to these as the AKNS equations. If we are seeking a 
generalisation of these equations to two spatial dimensions we clearly require that these 
AKNS equations will result when we restrict ourselves to x and t dependence alone. 
This may not appear in the most general case, but must be so in the special cases when 
generalisation is possible. Consequently we will choose a set of forms initially which 
have that potentiality within them and hope that when we apply the methods developed 
in previous papers (Morris 1976, 1977) everything will go through smoothly. In § 2 we 
introduce a basic ideal of forms which we then generalise by using a new technique to a 
much larger matrix system. The equations equivalent to this ideal are the time- 
independent form of the generalised equations we are trying to determine. In the 
following section time-derivative terms are added to obtain the required three- 
dimensional equations and in § 4 we establish an inverse scattering problem for the 
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resultant equations. The scope of the methods introduced in this paper is large; several 
directions in which the examples of this paper may be generalised are indicated and will 
be developed in future work. 

2. The basic ideal 

The set of differential two-forms 

a l  = dS  A dx +dA A dy + (rB -qC)dx A dy 

a 2 = d A  A dx +dS  A dy 

a3 = dB A d y + dq A dx + 2(Aq - SB) dx A d y 

(2.1) 

(2.2) 

(2.3) 

a4 = d C  A dy + d r  A dx -2(Ar-SC) dx A dy (2.4) 

span a closed ideal of forms equivalent to the partial differential equations 

S ,=A,+rB-qC (2.5) 

A, = S, (2.6) 

r, = C, - 2(Ar - SC). 

q, = B, + 2(Aq - SB) (2.7) 

(2.8) 

When S = -iA these equations reduce to the time-independent form of the AKNS 
equations. 

A prolongation structure may be easily established for the ideal (2.1)-(2.4) using 
standard methods (Wahlquist and Estabrook 1975, 1976, Dodd and Gibbon 1977, 
1978) and takes the form 

f l = d l + ( S x 1 + A x : ! + q x 3 + r x 4 )  dx +(Ax1+Sx2+Bx3+Cx4) dy (2.9) 

where the xi satisfy the Lie bracket relations 

[XI, X3]= 2x3 [X 1, X41 = -2X4 1x3, x41= x1 [x2, Xi] = 0 vi. (2.10) 

A two-dimensional representation of this algebra is given by 

X I  = 12b2 - l1 61 
~3 = -12bl 

~2 = -(llbl + 12b2) 
~4 = -11b2 

where bi = a / a l i  and yields the linear prologation structure 

fl = d l  + F ( S ,  A, q, r ) l  dx + G(S, A, B, C)f dy 

with 

F = f l S  + f 2 A  +f3q + f 4 r  

G = f l A  +f2S +f3B + f 4 C  

where l = (11, f 2 ) '  and f i  are the matrices 

f1=- [0  O] f 2 = - [  1 0  ] f3=[ ;  -3 
0 -1 0 1  

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

0 0  
f 4 = [ - 1  O]. (2.16) 
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We generalise the system by allowing the variables S,  A, q and r to become matrix- 
valued and by replacing the prolongation forms s2 by h defined by 

h = d l  + ( f@S + XZOS + X304  + X 4 0 r ) l  dx + ( i l O A  + X20S + f 3 0 B  + i 4 0 C ) l  dy 

where 5 = (l', 12, 13, 14)'. 

equations 

(2.17) 

This set of one-forms is easily shown to provide a prolongation structure for the 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

where for any pair of square matrices U and V we have defined { U, V} = UV + VU and 

These equations have a far richer structure than the original system and form a 
suitably general base for extension to higher dimensions. An example of some 
importance is given by the particular choice of parametrisation 

[U, VI= U V -  VU. 

q=[-;* - R * ]  
0 

B=[' - L * ]  
0 -A* 

-A -L 
r = [  0 0 1  

c = [ :  21 
(2.22) 

(2.23) 

(2.24) 

With this form of the matrices q, r, B, C, S and A equations (2.18) and (2.19) become 

(:-:)Q = -(RA* + R * A )  

(;+;)*= (LA*+L*A) .  

Equation (2.20) gives rise to the identities 

A ; = ( L + R ) *  

A,* = ( R  - L)* 

R ;  =L,*+A*(Q,- 'P)  

and finally equation (2.21) yields the relationships 

A ,  = ( R  + L )  

A, = ( R  - L )  

L,  =-R, +A(@-"). 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.3 1)  

(2.32) 
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Combining these equations together yields the underlying equations 

( ;+$)A = 2A(@-V) 

($ - :)a = - $ (: + $) (AA*) 

($ + :)v = ($ - :) (AA*) 

(2.33) 

(2.34) 

(2.35) 

which were used. by Morris (1977) to construct a prolongation structure for the 
generalised nonlinear Schrodinger equation considered in that paper. 

3. Generalising the equations to three dimensions 

The method introduced by Morris (1976) can be easily extended to matrix-valued 
variables. The closed ideal of matrix-valued two-forms defined by 

(3.1) 

(3.2) 

al = d S  A dx + d A  A dy +$({B, r } - ( 4 ,  C}) dx A dy 

a2 = dA A dx + d S  A dy +i([B,  r ] - [ q ,  C ] )  dx A dy 

~ ~ 3 = d B ~ d y + d 4 ~ d x + ( { A , q } - ( S , B } + [ S , q ] - [ A , B ] ) d ~ ~ d y  (3.3) 

a4 = d C  A dy + d r  A dx + ({S, C}-{A, r } + [ S ,  r]-[A, C]) dx A dy (3.4) 
can be generalised to the closed ideal of matrix-valued three-forms 

G j = a i  Adt+pi AdX Ady i =  1,. . . , 4  (3.5) 
provided that we can find two constant (4 x 4) matrices M and N having the properties 

4 

(dGM - dFN) = 1 .fi@pi 
i = l  

[M,  NI = 0 (3.7) 
[G, MI + [ N ,  F ]  = 0. 

If we seek a solution of these equations in the form 

M = aOb N = cOd (3.9) 
with [a, c ]  = 0 = [b, d ]  then (3.7) is automatically satisfied. Also, as the ,fi are a basis for 
(2 x 2) matrices, (dGM-dFN)  will be expressible in the form required in (3.6). 

If we choose 

we then find that equations (3.8) reduce to 

[S, d l  = [S, bl 

[A,  d l  = [ A ,  bl 

[B, b1=-{4, d l  

(3.10) 

(3.11) 

(3.12) 
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[C, 61 = Ir, 4. (3.13) 

The choice b = d automatically satisfies (3.10) and (3.1 1) and this leaves the subsidiary 
conditions 

(3.14) [B, 61 = - {q,  b l  
Equation (3.6) becomes 

( d G M - d F N )  = Z 3 0 d [ ( B  + q ) b ] + i @ d [ ( C - r ) b ]  

and we can see that for this choice of M and N 

P1= P 2  = o  (3.16) 

and 

P 3  = d ( B  + 4)b  /34 = d ( C  - r)b. 

Thus the generalised equations are given by 

(3.17) 

S,  = A, + ;(I& r }  - (4, C'H (3.18) 

A, = S, + &B, rl - [4, C l )  (3.19) 

qy=B,+{A, q}-{S,B}+CS,ql-[A,BI+(B,+q,)b (3.20) 

r, = C, -{A, r }  + {S ,  C }  + [ S ,  r ]  -[A, C ]  + (C, - r,)b (3.21) 

together with the constraints of equations (3.14) and (3.15) that 

[B,  b l = - h  b} and [C, bl = { r ,  b). (3.22) 

For the parametrisation (2.22)-(2.24) of the two-dimensional case we can choose 

O i  
b = ; ( o  o) 

and we obtain the nonlinear equations 

- I ~ = ( - $ + ~ ) A = ~ A ( @ - ~ )  . aA a' 

(--z)@ a = --(-+-)(AA*) i a  a 
ay ax 2 ax ay 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

which are a form of generalised Schrodinger equation and which have been analysed 
elsewhere (Morris 1977). 

4. A prolongation structure for the generalised equations 

We now have sufficient information in the matrices M and N to construct a prolon- 
gation structure for the equations (3.18143.21) which generalises that given in equation 
(2.17) for equations (2.5)-(2.8). We can include a parameter to serve as a scattering 
eigenvalue by simply replacing F by F - AI. More general methods have been discussed 
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elsewhere (Morris 1977), and in general depend upon an internal symmetry of a 
particular equation rather than existing for a general class. Further details concerning 
this particular nonlinear Schrodinger equation can be found in recent work by the 
author (Morris 1978). We will first examine the above substitution and then show how 
to include a more useful scattering parameter by utilising a symmetry of our general 
system. Our prolongation forms become 

R' = d l '  A dt  - [ ( S  + A + A )I1 + 45'3 dx A dt  - [ ( A  + S) l l  + B5'] dy A dt 

+ b(dx +dy)  A d l '  - ( B  + q)b12 dx A dy (4.1) 

and 

R2 = df A dt  - {rs' + [ (A - S )  + AZ]f} dx A dt - [cf '  + ( S  -A)& dy A dt 

+ b(dx  -dy) A d12 - (C - r)bl' dx A dy 

I' = (5'. 57 '  

a' = 0 2  = 0 

(4.2) 

where 

I 2  = (t3, t4K 
The inverse scattering problem which is obtained from the equations 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

Even though the scattering parameter is included in a trivial way, one obtains the 
interesting result that if one restricts to the y - t plane one obtains an inverse scattering 
problem equivalent to the normal nontrivial AKNS scattering problem. Details of this 
reduction in the case of the nonlinear Schrodinger equation can be found in earlier work 
(Morris 1977). We can obtain a generally more useful inverse scattering by utilising a 
symmetry of our equation system (3.15)-(3.22). One easily sees that replacing A by 
A + h b  leaves the system unchanged and so by making that replacement in the 
prolongation forms we can obtain the inverse scattering problem 

(4.8) 

(4.9) 

(4.10) 

(4.1 1)  
A consideration of this system in the case of the generalised nonlinear Schrodinger 

equation can be found in earlier work (Morris 1977). Clearly many more sets of 
equations which have the special property of possessing an inverse scattering formula- 
tion may be obtained by our methods. Different matrix representations and different 
dimensions for the new matrix-valued variables may be used. We have presented a 
practical method which we hope to place in a more general algebraic setting in future 
work. 
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